
 
Shin et al | Supplementary Information | Page 1 

Supplementary Information 

 

 

An atlas of genetic influences on human blood metabolites 
 

 

Table of Contents 

Supplementary Note ...................................................................................................................... 2 
Genetic and metabolomic data collection .......................................................................................... 2 

Blood sampling ......................................................................................................................................................... 2 
Metabolomic data acquisition and pre-processing .................................................................................... 2 
Metabolomic data overview and processing ................................................................................................ 4 
Genotyping and HapMap2 imputation ............................................................................................................ 6 

Interpretation and reporting of ratios................................................................................................ 7 
Heritability of metabolites explained by metabolic loci .............................................................. 8 
eQTL annotation of metabolite loci and Mendelian randomization analysis ....................... 9 
Network generation ................................................................................................................................. 11 
Integrating metabolic associations with complex trait locus information ......................... 15 
Outline and functionality of web resources .................................................................................... 15 

Supporting Online Website ............................................................................................................................... 15 
GWAS server ........................................................................................................................................................... 18 

Supplementary references .................................................................................................................... 20 
MuTHER consortium ............................................................................................................................... 22 

Supplementary Tables and Figures ........................................................................................ 23 
Supplementary Table 1. Study descriptives ................................................................................... 23 
Supplementary Table 2. Metabolites descriptives ....................................................................... 23 
Supplementary Table 3. Correlation between metabolites ...................................................... 23 
Supplementary Table 4. Summary statistics for the 145 loci identified in this study ..... 23 
Supplementary Table 5. Study-specific association statistics .................................................. 23 
Supplementary Table 6. Summary of biologic and disease annotations .............................. 23 
Supplementary Table 7. Heritability of metabolites and variance explained .................... 24 
Supplementary Table 8. Associations based on 1000 Genomes Project .............................. 24 
Supplementary Table 9. Epistatic effects ......................................................................................... 24 
Supplementary Table 10. Loci overlapping cis-eQTLs in four tissues .................................. 24 
Supplementary Table 11. Exploration of causality at SNP-GE-metabolite trios ................ 25 
Supplementary Table 12. Inborn errors of metabolism ............................................................ 25 
Supplementary Table 13. Drug targets and corresponding drugs ......................................... 25 
Supplementary Table 14. Summary of targets for drugs in different stages of 
development ............................................................................................................................................... 25 
Supplementary Figure 1. Study design ............................................................................................. 26 
Supplementary Figure 2. Manhattan plots ...................................................................................... 27 
Supplementary Figure 3. Comparison of imputations based on HapMap2 and 1000 
Genomes Project ....................................................................................................................................... 28 
Supplementary Figure 4. Interaction between NAT8 and PYROXD2 variants .................... 29 
Supplementary Figure 5. Cardiovascular disease and hypertension metabolic sub-
network ........................................................................................................................................................ 30 

 



 
Shin et al | Supplementary Information | Page 2 

Supplementary Note 

Genetic and metabolomic data collection 

Blood sampling 

Blood samples were collected from the TwinsUK cohort after at least 6 hours of 

fasting predominantly overnight. For plasma EDTA storage, blood on K2 EDTA was 

collected. Bloods were centrifuged for 10 minutes at 3,000RPM and plasma was 

removed from the tubes as the top, yellow, clear layer of liquid. Aliquoting of specimens 

was in 1.5 ml skirted microcentrifuge tubes. All tubes were filled approximately up to 0.5 

ml plasma. Until the analysis, samples were stored in freezers at -80C. Blood samples in 

KORA F4 were collected between 2006 and 2008, as part of the follow-up examination. 

To avoid variation due to circadian rhythm, blood was drawn in the morning between 

8:00 am and 10:30 am after at least 10 hours overnight fasting. Material was drawn into 

serum gel tubes, gently inverted twice, kept for 30 min at room temperature (18−25°C) to 

obtain complete coagulation, and centrifuged for 10 min at 2,750g (at 15°C). Serum was 

divided into aliquots and kept for a maximum of 6 hours at 4°C, after which it was deep 

frozen to −80°C until analysis. Differences in fasting time between the two studies could 

influence variation in the metabolite levels 1. This, however, does not affect the validity 

of the metabolite/SNP associations that replicate over both cohorts in the present study. 

Metabolomic data acquisition and pre-processing 

Sample Preparation for Glabal Metabolomics. Samples were stored at –70°C 

until processed. Sample preparation was carried out as described previously 2 at 

Metabolon, Inc.  Briefly, recovery standards were added prior to the first step in the 

extraction process for quality control purposes.  To remove protein, dissociate small 

molecules bound to protein or trapped in the precipitated protein matrix, and to recover 

chemically diverse metabolites, proteins were precipitated with methanol under vigorous 

shaking for 2 min (Glen Mills Genogrinder 2000) followed by centrifugation.  The 

resulting extract was divided into four fractions: one for analysis by ultra high 

performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS; 

positive mode), one for analysis by UPLC-MS/MS (negative mode), one for analysis by 

gas chromatography–mass spectrometry (GC-MS), and one sample was reserved for 

backup. 
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Three types of controls were analyzed in concert with the experimental samples: samples 

generated from a pool of human plasma (extensively characterized by Metabolon, Inc.) 

served as technical replicate throughout the data set; extracted water samples served as 

process blanks; and a cocktail of standards spiked into every analyzed sample allowed 

instrument performance monitoring. Instrument variability was determined by 

calculating the median relative standard deviation (RSD) for the standards that were 

added to each sample prior to injection into the mass spectrometers (median RSD=5%; 

n=30 standards). Overall process variability was determined by calculating the median 

RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of 

the pooled human plasma samples (median RSD=16.7%; n=490 metabolites).  

Experimental samples and controls were randomized across the platform run. 

Mass Spectrometry Analysis. Non-targeted MS analysis was performed at 

Metabolon, Inc.  Extracts were subjected to either GC-MS 3 or UPLC-MS/MS 2. The 

chromatography was standardized and, once the method was validated no further 

changes were made.  As part of Metabolon’s general practice, all columns were 

purchased from a single manufacturer’s lot at the outset of experiments.  All solvents 

were similarly purchased in bulk from a single manufacturer’s lot in sufficient quantity to 

complete all related experiments.  For each sample, vacuum-dried samples were 

dissolved in injection solvent containing eight or more injection standards at fixed 

concentrations, depending on the platform.  The internal standards were used both to 

assure injection and chromatographic consistency.  Instruments were tuned and 

calibrated for mass resolution and mass accuracy daily. 

The UPLC-MS/MS platform utilized a Waters Acquity UPLC and a ThermoFisher 

LTQ mass spectrometer, which included an electrospray ionization source and a linear 

ion-trap mass analyzer operated at nominal mass resolution.  The instrumentation was 

set to monitor for positive ions in acidic extracts or negative ions in basic extracts 

through independent injections.  Extracts were reconstituted, loaded onto columns 

(Waters UPLC BEH C18-2.1×100 mm, 1.7 µm), and gradient-eluted with water and 

95% methanol containing 0.1% formic acid (acidic extracts) or 6.5 mM ammonium 

bicarbonate (basic extracts).  Columns were washed and reconditioned after every 

injection.  The instrument was set to scan 99–1000 m/z and alternated between MS and 
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data-dependent MS2 scans using dynamic exclusion.  The scan speed was approximately 

six scans per s (three MS and three MS/MS scans). 

The samples destined for analysis by GC-MS were dried under vacuum desiccation for a 

minimum of 18 h prior to being derivatized under dried nitrogen using bistrimethyl-

silyltrifluoroacetamide.  Derivatized samples were separated on a 5% phenyldimethyl 

silicone column with helium as carrier gas and a temperature ramp from 60° to 340°C 

within a 17-min period.  All samples were analyzed on a Thermo-Finnigan Trace DSQ 

MS operated at unit mass resolving power with electron impact ionization and a 50–750 

atomic mass unit scan range. 

Compound Identification, Quantification and Data Curation. Metabolites were 

identified by automated comparison of the ion features in the experimental samples to a 

reference library of chemical standard entries that included retention time, molecular 

weight (m/z), preferred adducts, and in-source fragments as well as associated MS 

spectra and curated by visual inspection for quality control using software developed at 

Metabolon 4. Identification of known chemical entities is based on comparison to 

metabolomic library entries of purified standards.  Over 4,000 commercially available 

purified standard compounds have been acquired and registered into LIMS for 

distribution to both the LC/MS and GC/MS platforms for determination of their 

detectable characteristics.  An additional 5,300 mass spectral entries have been created 

for structurally unnamed biochemicals, which have been identified by virtue of their 

recurrent nature (both chromatographic and mass spectral).  These compounds have the 

potential to be identified by future acquisition of a matching purified standard or by 

classical structural analysis.  Peaks were quantified using area-under-the-curve.  Raw 

area counts for each metabolite in each sample were normalized to correct for variation 

resulting from instrument inter-day tuning differences by the median value for each run-

day, therefore, setting the medians to 1.0 for each run.  This preserved variation between 

samples but allowed metabolites of widely different raw peak areas to be compared on a 

similar graphical scale.  Missing values were imputed with the observed minimum after 

normalization. 

Metabolomic data overview and processing 

Datasets. A total of 529 different metabolites were measured in this study on 

human plasma from 5,004 individuals of the TwinsUK cohort. Data for 1,052 additional 

TwinsUK participants was generated previously using the same analytical platform and 
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protocols, and was merged to the current dataset. A subset of this latter dataset (258 

metabolites) was reported in 5. Data for 1,768 KORA F4 participants was measured 

previously to this study 5,6. The merged final dataset included a total of 503 metabolites 

measured in 6,056 TwinsUK samples and 517 metabolites measured in 1,768 KORA S4 

samples, of which 486 overlap between two cohorts (Supplementary Table 1).  

Metabolite Identity. Out of the 529 total metabolites, 310 were classified as 

known, meaning that their analytical characteristics (specific retention time, one or 

multiple masses (e.g. from adducts), and the fragmentation pattern of the primary ion(s)) 

match the characteristics of a metabolite with known chemical structure in Metabolon’s 

spectra library 7,8. The known metabolites quantified in this study are spanning a wide 

range of relevant biochemical classes (amino acids, acylcarnitines, sphingomyelins, 

glycerophospholipids, carbohydrates, vitamins, lipids, nucleotides, peptides, xenobiotics 

and steroids; a full list of metabolites is given in Supplementary Table 2). A total of 219 

‘unknown’ compounds were also measured. These unknowns correspond to metabolites 

in the library, whose chemical identity had not yet been definitively elucidated at the 

time of analysis 6. 

Quality Control. Patterns of missingness for each sample and for each metabolite 

were investigated, and one TwinsUK sample with high missing rate (83%) was excluded. 

No metabolite was excluded because of data missingness. For the remaining samples, 

the correlation between metabolite missingness rates and experimental batches (i.e. run-

days 1-27, 28-49, 50-71, 72-97, 98-122 and 123-147) was assessed. Due to calibration of 

the machines at periodical time points based on the date on which output files from 

Metabolon were generated, the missingness rate was shown to be correlated with the 

influence of experimental batches. Experimental batch effect was added as a covariate in 

association analysis, and a data normalization step was applied to adjust for variation 

due to instrument run-day tuning differences. For each metabolite, the raw value was 

corrected within the same run-day by registering the run-day medians to equal to one 

and normalizing each data point proportionately. A log transformation with base 10 was 

applied to all the metabolites, following previous work 5. After transformation, data 

points laying more than 4 standard deviations from the mean of each metabolite 

concentration were excluded. The number of samples, minimum and maximum values, 

mean and standard deviation for each metabolite in the final QC-ed data are reported in 

Supplementary Table 2.  
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Genotyping and HapMap2 imputation 

The genotyping and imputation steps for the TwinsUK and KORA F4 cohorts 

have been described previously in detail and are briefly described here 9-11.  

TwinsUK. Genotyping. Genotyping of the TwinsUK dataset was done with a 

combination of Illumina arrays (HumanHap300, HumanHap610Q, 1M-Duo and 

1.2MDuo). Normalised intensity data for each of the three arrays were processed using 

the Illluminus calling algorithm. No calls were assigned if an individual's most likely 

genotyped was called with less than a posterior probability threshold of 0.95. Finally, 

intensity cluster plots of significant SNPs were visually inspected for over-dispersion 

biased no calling, and/or erroneous genotype assignment. SNPs exhibiting any of these 

characteristics were discarded. Data QC. Similar exclusion criteria were applied to each 

of the three datasets separately. Samples: Exclusion criteria were: (i) sample call rate 

<98%, (ii) heterozygosity across all SNPs ≥2 s.d. from the sample mean; (iii) evidence of 

non-European ancestry as assessed by PCA comparison with HapMap3 populations; (iv) 

observed pairwise IBD probabilities suggestive of sample identity errors; (v). We 

corrected misclassified monozygotic and dizygotic twins based on IBD probabilities. 

SNPs. Exclusion criteria were (i) Hardy-Weinberg p-value<10−6, assessed in a set of 

unrelated samples; (ii) MAF<1%, assessed in a set of unrelated samples; (iii) SNP call 

rate <97% (SNPs with MAF≥5%) or < 99% (for 1%≤MAF<5%). Alleles of all three 

datasets were aligned to the Human Genome (Build36) forward strand. Data merge. 

Data from the three genotyping panels were merged to generate a single dataset for 

imputation. Prior to merging, strict quality control was carried out on each pairwise 

dataset to exclude SNPs and samples showing evidence for genotyping bias in any two 

dataset. Quality criteria were as follows: (i) concordance for samples typed in two 

different datasets was set at >99%; (ii) concordance for duplicate SNPs >99%; (iii) 

Hardy-Weinberg p-value<10−6, assessed in a set of unrelated samples; (iv) observed 

pairwise IBD probabilities suggestive of sample identity errors. Furthermore, systematic 

genotyping bias between any two datasets was assessed by carrying out logistic 

regression after randomly assigning case status to one of the two datasets. No inflation of 

summary statistics was observed. After quality control, the three datasets were merged, 

and duplicate individuals removed. The merged dataset consists of 5,654 individuals 

(2,040 from the HumanHap300, 3,461 from the HumanHap610Q and 153 from the 

HumanHap1M and 1.2MDuo arrays) and a variable number of SNPs depending on the 
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SNP array used (HumanHap300: 303,940, HumanHap610Q: 553,487, HumanHap1M 

and 1.2MDuo: 874,733). The HumanHap1M and 1.2MDuo datasets were further 

reduced to the SNP content of the HumanHap610Q array (553,487 SNPs) for 

imputation. Imputation. Imputation was performed using the IMPUTE software 

package (v2) 12 using a stepwise procedure. First, the sparser HumanHap300 dataset was 

imputed to the HumanHap610Q content using phased TwinsUK HumanHap610Q 

haplotypes as reference. Subsequently, the combined panel was imputed using reference 

haplotypes from the HapMap2 project (rel 22, combined CEU+YRI+ASN panels). 

KORA F4. Genotyping of the KORA F4 population was carried out using the 

Affymetrix GeneChip array 6.0 and the genotypes were determined using Birdseed2 

clustering algorithm. The criteria of call rate > 95% and p(Hardy-Weinberg) > 10  were 

applied as filters for SNP quality: 655,658 autosomal SNPs satisfied these criteria. 

Imputation was done using IMPUTE v0.4.2 12 based on HapMap 2 (Supplementary 

Table 1).  

Interpretation and reporting of ratios 

The following rules were then applied for reporting an association with ratio in the 

manuscript and supplementary online website. Evidence for ratios was reported only 

when statistical evidence for the ratio was stronger than for a metabolite alone. Namely, 

ratios were considered only if their P-gain > 250, where P-gain = min(P(Metabolite A), 

P(Metabolite B))/P(A/B), following the formalization previously presented 13.   

 If a locus was associated more strongly with a ratio than with a metabolite (as 

indicated by P-gain>250), both the metabolite and the best ratio of all significant 

ratios were reported; 

 If a locus was associated with both a metabolite and one or more ratio at genome-

wide significance, but P-gain<250, only the association with the metabolite was 

reported; 

 If a locus was associated only with one or more ratios, the ratios were reported. Only 

8 of 145 associations were explained uniquely by a ratio, and namely ALPL, F12, 

PRRC2A, DDC, AKR1C4, SLC27A2, GOT2 and APOE.   

 

We applied less stringent criteria for reporting metabolites and ratios into the 

metabolomics GWAS database to enable retrieval of suggestive associations for 
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metabolite-focused or locus-focused analyses of interest. The criteria for inclusion in the 

GWAS database were:  

 For metabolites: all associations with P-value of 10-4 

 For ratios: all associations with P<1.00x10-6; P-gain≥10 

Among the associations with ratios thus reported, it is worth noting that multiple 

statistical and biological interpretations are possible. A subset of the associations may be 

interpreted as the SNP affecting a biochemical reaction where one molecule links to the 

substrate and one to the product  (classed as ‘Activity’ in the column Biochemical locus-

metabolite relationship [PMID] in Supplementary Table 6). Other ratios exist where 

both molecules are linked to a substrate or both linked to a product, and where 

presumably the effect of the genetic variant is to cause one molecule to be consumed or 

acted on faster than the other (‘Selectivity’). Other more can be interpreted as 

‘Normalizing’ ratios, where one metabolite is probably (related to) a substrate or product 

and the other is not, but they are both in the same class (e.g., “amino acids”). Finally, 

‘Unknowns’ ratios include all cases where one or both molecules are still unknowns or 

where there is no candidate causal gene (all others).  

Heritability of metabolites explained by metabolic loci 

Heritability analyses applied to metabolite data allow estimating the relative 

contribution of genetic and non-genetic factors to metabolite variance, and the extent to 

which genetic factors contribute to variation in metabolite concentrations. We applied 

the traditional twin (ACE) model to the TwinsUK dataset to partition metabolite 

variance into their additive genetic, shared environmental and unique environmental 

contributions 14. The median metabolite ACE-heritability was 0.25 (IQR=0.14-0.35), 

with the highest heritabilities estimated for several lipid and steroid derivatives (for 

instance butyrylcarnitine, h2=0.76 or androsterone sulfate, h2=0.71), remarkably the 

tobacco metabolite cotinine (h2=0.75), the glycemic marker 1,5-anhydroglucitol 

(h2=0.61) and several unknown compounds (Figure 3 and Supplementary Table 7).  

The fraction of heritability explained by known loci was then estimated as the 

ratio of total variance of the metabolite to the variance explained by the regression model 

including all lead SNPs associated with a given metabolite. The fraction of heritability 

explained by the discovered loci was high (median 6.9%, range 1-62%). SNPs explained 

more than 50% heritability in the case of four metabolites (5-oxoproline, X-12092, N-
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acetylornithine, butyrylcarnitine), and more than 20% heritability in the case of 31 

metabolites. These results suggest a high individual contribution of SNPs to metabolite 

variance. These estimates tend to be orders of magnitude greater compared to derived 

but more complex endpoints such as HDL or LDL cholesterol, where individual loci 

typically explain well below 1% of trait heritability 15,16. This confirms the value of 

metabolites as useful intermediate endpoints for genetic studies of complex traits owing 

to their simpler allelic architecture 17. 

To evaluate if our discovery effort based on HapMap2 panel comprehensively 

captured the effect of underlying causative genetic variants at the 145 loci, we explored 

the contribution of variants of lower allele frequency and of non-additive effects 

(epistasis) to metabolite heritability. To explore the contribution of low frequency 

variants, associations at each locus were recalculated after local imputation using a 

denser reference set (1000 Genomes Project, 1KGP), which allows more accurate 

imputation of rare variants compared to the sparser HapMap2 panel 18. There was no 

improvement in variance explained using the 1KGP reference set (Supplementary Table 

7 and Supplementary Table 8, with the exception of the CYP3A cluster presented in 

Supplementary Figure 3), suggesting that associations at these loci are well tagged by 

common variants well represented in the HapMap2 panel. We further systematically 

evaluated whether epistatic interactions between pairs of lead SNPs associated with the 

same metabolite may increase the proportion of heritability explained. This analysis did 

not suggest a major contribution for such epistatic effects to overall unexplained 

metabolite variance (Supplementary Table 9), with the exception of a strong interaction 

observed between NAT8 and PYROXD2 loci on the unknown metabolite X-12093 

(Figure 4). Overall these observations suggest that associations at the 145 loci are 

explained by common genetic variants acting with predominantly additive effects, and 

that our discovery effort based on the HapMap2 panel was well powered to 

comprehensively capture the effect of these genetic variants. 

 

eQTL annotation of metabolite loci and Mendelian randomization analysis  

One major challenge of interpreting associations from GWAS is formulating and 

testing hypotheses on the causal effect of a SNP on an associated trait. One testable 

scenario on the effect of the SNP on the metabolite concentration (MET) is when it is 
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mediated by gene expression (GE), which provides new opportunities to investigate 

metabolite pathways at the molecular level. SNP-GE-MET trios at a metabolite-

associated SNP can thus be used to test whether a change in GE is causal to the relative 

change in MET, using SNP as instrumental variables. In this study, we exploited the 

availability of gene expression levels measured and at the same time of visit of the 

metabolomic measurement to explore causal effects at cis-regulatory SNPs.  

To predict whether a lead SNP was likely to exert its effect on the metabolite through 

changes in expression of nearby genes, we systematically assessed the co-location of 

expression quantitative trait loci (eQTLs) with metabolic loci. Firstly, we assessed the 

eQTL overlap in two expression QTL datasets, and including: (i) the most recent 

iteration of the MuTHER eQTL dataset 19 and a liver eQTL dataset 20. For each lead 

metabolomic SNP, we first retrieved all SNPs with high linkage disequilibrium (r2≥0.8) 

in the 1000 Genomes pilot phase (CEU population). Each lead SNP and its proxies were 

then used as baits to search the liver or MuTHER Project expression database. All 

significant cis-eQTLs within a 1Mb window centred on the lead SNP were retrieved from 

these dataset, and the best eQTL p-value in each tissue was noted. A total of 57 lead 

SNPs identified cis-eQTLs in at least one of four tissues searched under the nominal 

permutation p-value<0.001. A total of 101 SNP-gene pairs were identified, 

corresponding to 97 different genes. Of the 97 genes, 38 are annotated as causal to the 

metabolite association based on our annotation, and 59 as non-causal. 

We first addressed the extent to which mQTLs overlap cis-eQTLs, and the extent to 

which such overlap can be interpreted in the context of possible tissue specific effects. Of 

the 38 causal genes, 10 (or 26% of total), 22 (58%), 17 (45%) and 17 (45%) had eQTLs in 

liver, fat, LCL and skin respectively (Supplementary Table 10). Of the 59 non-causal 

genes, 5 (8%), 21 (36%), 34 (58%), 27 (46%) had eQTLs in the same tissues. This 

suggests an enrichment by 3.25-fold of eQTLs matching causal genes in liver compared 

to those matching a non-causal gene (Fisher’s exact test p-value = 0.023, two-tailed). 

Similarly, there was a 1.6-fold enrichment of eQTLs matching causal genes in fat 

compared to non-causal genes (Fisher’s exact test p-value = 0.038, two-tailed). No 

enrichment was observed in LCL and skin, possibly reflecting the greater contribution 

liver and fat metabolism make to blood metabolite levels.  

Having identified loci with a potential effect through gene regulation we next 

asked, for all 32 loci with eQTLs matching causal genes in fat, skin or LCLs, whether 
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the change in GE was causal to the relative change in MET. For this analysis we 

exploited the unique availability of gene expression levels measured by the MuTHER 

resource in the same individuals and at the same time-point of metabolomics 

measurements 19. Gene expression profiles for the 32 genes were retrieved from the 

MuTHER database in 484 TwinsUK participants overlapping with this study. We then 

applied a Mendelian randomization (MR) analysis to each SNP-transcript-metabolite 

dataset. Two loci showed significant evidence for gene expression changes mediating 

SNP-metabolite associations (THEM4 and CYP3A5, Figure 4) under a Bonferroni-

corrected permutation threshold accounting for the number of loci tested (p-

value=8.9x10-4=0.05/32). THEM4 was significant also at a more stringent cutoff 

accounting for all 97 causal and non-causal genes associated with a SNP. Eight 

additional loci showed suggestive evidence at a nominal p-value of 0.05 (Supplementary 

Table 11). In these two cases, the Mendelian randomization formalization supports a 

causal role for the eQTL variants on metabolic trait associations, however in most cases 

the study power was not sufficient to conclusively demonstrate or refute causation.  

The examples of THEM4 and CYP3A5 represent first examples of a formal 

evaluation of an assumption widely applied by many genome-wide association studies, 

i.e. that regulatory effects are likely to underpin associations with complex traits where 

overlap with eQTLs is observed. Our results thus provide a first paradigm for how 

genome-wide studies may in the future exploit such datasets to empower the 

downstream statistical evaluation of functional consequences of SNPs. The extension of 

this approach to larger datasets with similar molecular endpoints would allow 

systematically assessing causation at all putative cis-regulatory genes.  

 

Network generation 

Data preprocessing. To remove relatedness, we selected from each twin pair the 

individual with the least missing datapoints, leaving a total of 3,121 TwinsUK samples. 

We then sequentially excluded metabolites with more than 20% missing values, and 

samples with more than 10% missing values from the QC-ed metabolomics datasets for 

each cohort. Remaining missing values were imputed with the ‘mice’ package in R-

project 23. As a result, 3,047 unrelated TwinsUK samples with 355 metabolites and 1,764 
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KORA samples with 312 metabolites were left for the subsequent GGM network 

analysis.  

 

Gaussian graphical modeling. We generated Gaussian graphical models (GGMs) for 

both metabolomics datasets as described previously 24. Briefly, GGMs are based on 

partial correlation coefficients, i.e. pairwise correlations that have been corrected for the 

effects of all remaining variables in the dataset. Potential confounding effects from age, 

sex and batch effect were removed by adding them to the data matrix as well (thereby 

also correcting for these variables during partial correlation calculation). The full-order 

(conditioned against all other variables) partial correlation matrix      
  
  is defined as  

 

                   with          , 

 

where   is the matrix of regular Pearson correlation coefficients for all variables. Since 

the test for statistical significance of a partial correlation is heavily dependent on the 

respective sample sizes of the two studies, we here chose a constant positive partial 

correlation threshold of 0.2 in order to declare whether an edge is ‘present’ or not in the 

model. The use of a threshold based on partial correlation estimates, rather than the p-

values of the partial correlations, was justified by the fact that the TwinsUK sample used 

for the GGM analysis has double the number of individuals than KORA. Because of the 

different statistical power of the two studies, the partial correlation value provides a more 

stable indicator of the partial correlation between two metabolites than the p-value itself, 

not affected by power. Supporting this choice, we consider that partial correlation 

estimates in cohorts with thousands of participants are very stable. We further removed 

negative partial correlations from this study, which may represent spurious signals. For 

instance, if A and B are uncorrelated, but both highly correlated with C, then the partial 

correlation between A and B will be strongly negative. Moreover, in a steady state mass 

network, substrates and products of an enzymatic reaction will not be negatively 

correlated (against common intuition). Both points have been discussed at greater length 

in a previous publication 24. 

 

Combination of GGMs from the two cohorts. The two resulting GGMs from the 

KORA and the TwinsUK dataset were combined into a single consensus network by 

drawing an edge between two metabolites whenever at least one of the two models 
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contains a significant partial correlation.  The statistical difference between two partial 

correlations    
  and    

  between the same variables   and   from the two different datasets 

was assessed using the following statistic 25:  

 

 

   
     

         
  

                      
  

 

where      
 

 
   

   

   
  is the Fisher transformation 23,    and    are the sample sizes of 

datasets   and  , and   is the total number of variables in the two datasets (the union of 

variables going into GGM analysis, 396 metabolites).   is approximately standard 

normally distributed, and a statistical test can thus be constructed using the cumulative 

normal distribution function. Note that the partial correlation differences are annotated 

to the network edges in the online supplement. 

 

Stability of the Gaussian graphical model. We performed a bootstrapping-based 

subsampling approach to verify the stability of partial correlations in the Twins and 

KORA datasets. To this end, we generated 1,000 bootstrap datasets for each cohort by 

randomly drawing from the original dataset with replacement. For each bootstrap 

dataset, we calculated the respective partial correlation matrix. The variation of partial 

correlation coefficients is generally low, indicating for stable estimates.  

 

Combining metabolic and genetic networks. We added the results from our GWAS to 

the combined GGM network (see above). To this end, we introduced two new types of 

nodes, in addition to the metabolites: (1) Loci. A locus is linked with an edge to a 

metabolite if there is a genome-wide significant association between the metabolite 

concentration and at least one SNP in the locus region. (2) Ratios. In order to encode 

metabolite ratio information we introduced a group of ‘pseudo’-nodes. These nodes link 

two metabolites and one locus if the ratio of the two metabolites showed genome-wide 

significance with the locus. It is to be noted that generating a full joint graphical model 

including both metabolites and all SNPs is statistically not feasible due to the 

considerably large number of variables involved. Moreover, discrete variables like SNPs 
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require more specialized types of graphical models than purely Gaussian ones (see e.g. 

26). 

 

Condensed network generation. The ‘condensed’ network view (Figure 2) was 

generated as follows. Each metabolite is annotated with one out of the following eight 

super-pathways: “Lipid”, “Carbohydrate”, “Amino acid”, “Xenobiotics”, “Nucleotide”, 

“Energy”, “Peptide”, “Cofactors and vitamins”. The super-pathways are further 

subdivided into sub-pathways like “Oxidative phosphorylation”, “Carnitine 

metabolism”, or “Branched-chain amino acids”. To generate the network, we merged all 

metabolites belonging to the same sub-pathway into a single node. Two pathway-nodes 

were connected if there was at least one metabolite pair with a GGM edge, where one 

metabolite belongs to the one pathway and the other metabolite to the respective other 

pathway. Similarly, a pathway node and a locus were connected in the network, if there 

was at least one genome-wide significant association between the locus and one of the 

metabolites belonging to the pathway (or a ratio containing a metabolite from the 

pathway). Each pathway node was then colored according to its respective super-

pathway, resulting in a total of eight different pathway colors in the final network. 

 

The unknown metabolites in our analysis required a specific pre-processing for the 

network analysis. In order to incorporate the statistical associations with unknowns into 

the network, we derived their (most likely) sub-pathway annotation directly from the 

network context. To this end, we inspected the network neighborhood of the unknown 

metabolite. We assigned the major sub-pathway class among the known neighbors of the 

unknown node in the network (two nodes are neighbors if they share a common network 

edge). If all neighbors were either unknown metabolites themselves or gene locus nodes, 

we then investigated the 2-neighborhood (the neighbors of the neighbors), and so on. 

Unknown metabolites that could not be assigned any pathway annotation using this 

approach were excluded from the analysis. Note that the metabolomic and genetic 

network context has previously been previously shown to provide proper assignment of 

the metabolic pathway an unknown metabolite is involved in 6. 
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Integrating metabolic associations with complex trait locus information 

Supplementary Figure 5 provides an illustration of how one may integrate information 

from metabolic associations and relationships to increase understanding of complex trait 

associations. The bradykinin/kininogen/kinin system is a poorly understood system 

with a central role in the regulation of blood pressure. Our previous study reported an 

association between the kallikrein gene (KLKB1) and the des-Arg form of the 

nonapeptide bradykinin 5. Bradykinin is a peptide hormone with a central role in the 

regulation of blood pressure central to the function of angiotensin-converting-enzyme 

(ACE) inhibitors. Two novel associations in this pathway were identified owing to the 

increased statistical power of our study. The first association was in KNG1 (encoding 

kininogen 1), which undergoes alternative splicing to generate high molecular weight 

kininogen (HMWK- a precursor of bradykinin) and low molecular weight kininogen 

(LMWK). A second novel association was detected between variants in F12 and the 

ratio between the unknown X-12038 and bradykinin. F12 encodes Factor XII, a 

proenzyme activated to factor XIIa, responsible for the cleavage of prekallikrein 

(encoded by KLKB1) to form kallikrein by the cleavage of an internal Arg-Ile bond. 

Prekallikrein is a glycoprotein that participates in the surface-dependent activation of 

blood coagulation, fibrinolysis and inflammation, and contributes to feedback regulation 

of bradykinin levels 21. These associations thus identify KNG1 and F12 variants at a 

center of an important cardiovascular disease pathway. Notably these variants were 

recently associated with activated partial thromboplastin time (APTT) 22, suggesting a 

potential role for these variants in the regulation of blood coagulation. 

 

Outline and functionality of web resources  

Supporting Online Website 

To improve the accessibility of our data and results, we have developed an easy-to-use 

web resource (http://gwas.eu/si), which allows browsing and querying the data from 

various entry points:  

1. Chromosomal map showing the positions of the 145 top loci serves as a gateway to all 

information collected for each genome-wide significant SNP-metabolite association.  

http://gwas.eu/si
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2. Locus information. By clicking on a locus the user is provided with detailed 

information on the association, the extensive annotations regarding biological, 

medical and pharmaceutical relevance as well as further characteristics such as eQTL 

hits and metabolite heritability as well as locus-wide association plots. Metabolites 

and loci are linked to relevant public databases such as dbSNP, HMDB, KEGG, and 

orphanet. 
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3. Free text search in all information presented in the 145 locus web pages and given in 

the supplementary tables facilitates querying the data for readers with various levels 

of bioinformatics skills. Besides queries on rs numbers, gene and metabolite names, 

the system thus also allows queries such as and “peptide” or “kidney disease”. 

 

 
 

4. Web-based version of the complete reconstructed metabolic network produced in this 

manuscript is accessible through direct browsing within the web site, while the 

corresponding stand-alone Cytoscape version is available from 

http://metabolomics.helmholtz-muenchen.de/gwa/si/network/SI_network.cys. 

Moreover, the network is interlinked with the supplement web pages for each locus. 

Via hyperlinks on these pages the reader can directly zoom into the part of the 

network relevant for the particular locus. 

http://metabolomics.helmholtz-muenchen.de/gwa/si/network/SI_network.cys
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GWAS server 

A GWAS server (http://metabolomics.helmholtz-muenchen.de/gwas) with efficient 

search functionality provides access to the full list of association results including 

associations that did not reach genome wide significance in this study but represent 

valuable information for researchers interested in specific genes or metabolites.  

 

 

http://metabolomics.helmholtz-muenchen.de/gwas
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Supplementary Tables and Figures 

Supplementary Table 1. Study descriptives 

Details of methods and software used for the genetic analysis, including cohort samples, metrics 

used for genotyping, SNP data quality control and imputation and details on statistical analyses.  

Supplementary Table 2. Metabolites descriptives 

Pathway and super-pathway information are given for metabolites with known chemical identity. 

Information on measurement platform, number of individuals with valid trait measurement as well 

as trait mean, SD and range after QC (composed of run-day block correction also known as run-day 

normalization, log transformation with a base of 10 and >4SD outliers exclusion) are given for all 

metabolites. The spectra data format (129:15) indicates the ion (m/z) and relative peak intensity.  

Each ion in the spectra is separated by a space. For CV(%) calculation, 4-5 replicates of the MTRX 

(QC/technical replicate samples created from a pool of well characterized human plasma) were run 

each platform day, corresponding to 1300 MTRX for the study.  

Supplementary Table 3. Correlation between metabolites 

Pearson’s correlation coefficient r between pairs of metabolites measured in this study. 

Supplementary Table 4. Summary statistics for the 145 loci identified in this study 

Only the most associated metabolite per locus is given. Genes with a high plausibility of being 

causal based on known biochemical function (Online Methods) are underlined; for other loci, the 

gene nearest to the sentinel SNP is given. A full list of all metabolites associated at genome-wide 

significance with each locus, and study specific summary statistics, are given in Supplementary 

Table 5. Associations below genome-wide significance are available from the Metabolomics GWAS 

server (see URLs). 

Supplementary Table 5. Study-specific association statistics 

Statistics are reported for the most associated metabolite at each locus in Supplementary Table 4. 

EA/OA = effect/other allele; EAF = effect allele frequency. 

Supplementary Table 6. Summary of biologic and disease annotations 

For each of the 145 loci, information correlating metabolites to gene functions is given, indicating 

likely biochemical reactions underlying the observed associations. Genes within 500 kb from the 

lead SNP were annotated as detailed in the Online Methods. GWAS overlap was annotated by 

searching the complete NHGRI GWAS database using either the lead SNP or a statistical 
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equivalent (proxy, with r2
≥0.8 with lead SNP). Drug information: ME=Metabolizing enzyme, 

DT=drug target or TP=transporter for FDA- and/or EMA-approved drug; Dev=in development, 

Drug-like=compound with activity in ChEMBL).  

Supplementary Table 7. Heritability of metabolites and variance explained 

For each of 486 raw metabolites, the narrow-sense heritability was estimated under a full ACE 

model from monozygotic and dizygotic twin pairs in TwinsUK. The known heritability (or the 

variance explained by known variants in GWAS) was estimated by multiple regression analysis 

including all associated SNPs under additive genetic models, after adjusting for covariates (age and 

sex in KORA; age, sex and experimental batch in TwinsUK) both in TwinsUK (limited to a subset 

of unrelated singletons) and KORA. The variance explained by SNPs was estimated using the most 

associated SNPs identified based on HapMap2 and 1000 Genome Project analyses respectively 

(Supplementary Table 8).  

Supplementary Table 8. Associations based on 1000 Genomes Project 

For each locus described in Supplementary Table 4, the identity of the most associated SNP was 

obtained from the discovery effort (based on HapMap2 imputation) to the best SNP identified after 

local re-analysis based on imputation from the 1000 Genome Project. The variances explained by 

the most associated SNP in both HM2 and 1KG based genotype data are given as well as effect 

sizes, standard errors and p-values. The variance explained by each SNP in TwinsUK was estimated 

using a subset of unrelated samples.  

Supplementary Table 9. Epistatic effects 

Additive and interaction models were fit for each pairs of SNPs associated with a given metabolite 

at genome-wide significant level (additive: Y = alpha + beta1*SNP1 + beta2*SNP2 + e; interaction: 

Y = alpha + beta1*SNP1 + beta2*SNP2 + gamma*SNP1*SNP2 +e). Significance of the interaction 

term in the epistasis model was tested by ANOVA F-test.  

Supplementary Table 10. Loci overlapping cis-eQTLs in four tissues 

Overlap of metabolomic loci with expression quantitative trait loci (cis-eQTL) measured in Liver 20 

or in fat, skin or LCLs by the MuTHER project 19. For each lead metabolomic SNP, we first 

retrieved all SNPs with high linkage disequilibrium (r2≥0.8) in the 1000 Genomes pilot phase (CEU 

population). Each lead SNP and its proxies were then used as baits to search the MuTHER Project 

expression database. All significant cis-eQTLs within a 1Mb window centred on the lead SNP were 

retrieved from these dataset, and the best eQTL p-value in each tissue was noted. All eQTLs 
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identified in the MuTHER dataset and where the gene matched the gene prioritized as likely causal, 

were taken forward in the Mendelian randomization analysis (Supplementary Table 11). 

Supplementary Table 11. Exploration of causality at SNP-GE-metabolite trios 

For each of the 32 loci where the lead SNP (or its proxy) was cis-regulatory in the MuTHER Pilot 

database and matched a predicted causal gene, the effect of the probe gene expression (GE) onto the 

metabolite (MET) was estimated by Mendelian randomization using a subset of 484 unrelated twin 

with gene expression and metabolite measurements taken at the same time of visit. A Bonferroni 

corrected 99.85% confidence interval (p-value=0.05/32) was obtained from 10,000 permutations.  

Supplementary Table 12. Inborn errors of metabolism 

Information on gene and disease characteristics for genes associated with inborn errors of 

metabolism and overlapping with the metabolomic loci were obtained from Orphanet.  

Supplementary Table 13. Drug targets and corresponding drugs 

List of FDA-approved drugs that exert their therapeutic effect through genes and proteins at each 

locus.  

Supplementary Table 14. Summary of targets for drugs in different stages of development 

Information is presented only for targets for drugs in various stages of development (preclinical, 

Phase I-III, pre-registration or registration), failed (either discontinued, withdrawn) or where no 

development activity is reported (NDR) in the PharmaProjects resource. 
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Supplementary Figure 1. Study design 
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Supplementary Figure 2. Manhattan plots 

Association results for raw metabolite concentrations are shown for genome-wide SNPs. Top panel: 
TwinsUK, bottom: KORA. Only SNPs with p<1x10-6 are displayed. The green line indicates the 

genome-wide cut-off of p<1.03x10-10. Loci with P-values <1x10-30 are indicated with a red symbol. 
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Supplementary Figure 3. Comparison of imputations based on HapMap2 and 1000 

Genomes Project 

Correlation between a) minor allele frequency (MAF) in meta-analysis, b), association p-value in 

meta-analysis (on a –log10 scale), c) and average variance explained for the most significant SNPs 
selected from imputation based on either the HM2 (x-axis) or 1KG (y-axis) panels. The high 

correlations between the HapMap2 and 1KGP datasets support the view that metabolic associations 

are driven by common variants well tagged by HM2 imputation. d, e) One exception is locus 
CYP3A4-5-7, where the 1KGP scan reveals an additional variant (rs10278040) with greater 

association and variance explained for androsterone sulfate compared to the corresponding HM2 
variant (rs148982377). [HM2: rs148982377, MAF=0.038, P=7.65x10-244, R2=15.6%; 1KGP: 

rs10278040, MAF=0.042, P=8.82x10-113, R2
HM2=10.3%].  
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Supplementary Figure 4. Interaction between NAT8 and PYROXD2 variants 

a) Boxplots of PYROXD2 and NAT8 transcript levels in fat, skin and LCLs as a function of the 

genotype conformation between the two variants rs10469966 (NAT8) and rs4488133 (PYROXD2).  

b) Summary of association and interaction effects at the two loci, summarizing association statistics 
and variances explained under the single SNP, additive and interaction models. An ANOVA F-test 
was used to test significance of the interactive model over the additive model. The association test 

with X-12093 reported here is based on combined TwinsUK and KORA dataset; all other analyses 

were carried out using unrelated TwinsUK singletons. See also Figure 4. 
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Supplementary Figure 5. Cardiovascular disease and hypertension metabolic sub-

network 

Network data was annotated with expert knowledge to illustrate correlations between molecular 

relationships and knowledge on blood pressure regulation, blood coagulation, and known molecular 

risk factors for cardiovascular disease and hypertension. Black nodes and edges. This sub-network 

was derived from metabolite data and corresponds to the inset in Figure 2 B. Metabolites (circular 

nodes) and genes (diamond-shaped nodes) of the fibrinogen cleavage (left) and the kininogen/kinin 

system (right) and their interconnections were derived from our data. Grey nodes and edges. 

Annotations of biochemical function based on expert knowledge 27. Colored nodes and edges. 

Reported associations based on genome-wide studies for blood pressure regulation (orange), blood 

coagulation (blue), and cholesterol levels (purple; information in Supplementary Table 6). 
 

 


